Sampling Methods

Name	Picture	Explanation	Example
Random			
Simple Random Sample (SRS)		Everyone in the population (i.e sampling frame) has an equal opportunity to be selected and every sample of certain size has the same chance of being selected (as every other sample of the same size) (it is important you realise that not every sample of certain size has the same chance of being selected for stratified sampling)	e.g. 150 cars in a parking lot. Want to pick 3 of them Label cars 001-150 since want blocks of 3 - If using a number line table: 456124321150240984312102364219814 Split the number line up into blocks of 3 and select 3 cars 456124321150240984312102364219814 If using calculator: Randint ($1,150,3$) will select 3 cars 60 BMW cars at garage, want to pick 7 (use a calculator to do this) Label cars 01-60 since want blocks of 2 (Note: We could label 00-59) Using calculator: Math, PRB, randint $(1,60,7)$ This gives us 7 numbers $44,1,26,19,59,2,5$
Systematic		Choose subjects in a systematic, orderly/logical way by sampling every $k^{\text {th }}$ element/value	e.g. Select a sample of 15 people from a business survey of 1200 people Label the people 0001 to 1200 $\frac{1200}{15}=80$ i.e. we'll take every $80^{\text {th }}$ value - If using number line: 12436289461234560124 Split this up into blocks of 4: 12436289461234560124 124 is our starting point $124+80=204,204+80=284,284+80=364$ etc $124,204,284,364,444,524,604,684,764,844,924,1004,1084,1164$, 044 If using a calculator: Randint $(1,1200,1)$ gives 24 so start at 24 $24+80=104,104+80=184,184+80=264$ etc $24,104,184,264,344,424,504,584,664,744,824,904,984,1064,1144$
Stratified Random selection within each strata	Alike/homgeneous WITHIN strata/groups Mutually exclusive/heterogeneous/dissimilar BETWEEN groups i.e. the stratum are non-overlapping	Split population into smaller groups called strata (subgroups) based on common characteristics/shared attributes.Everyone in the population has an equal opportunity to be selected but NOT EVERY SAMPLE OF A CERTAIN SIZE HAS THE SAME CHANCE OF BEING SELECTED, so this is not like SRS. Statified sampling ensures the sample group is representative of the population's characteristics. A random sample of each stratum is taken in a number proportional to the stratums size when compared to the population. We stratify based on what outside factor we think may affect what we are testing.	e.g. A company has $\mathbf{3 2 0}$ drivers, $\mathbf{8 0}$ office workers and 40 mechanics. We want to select a committee of 11 to represent all the employees. number for each category $=\frac{\text { category total }}{\text { complete total }} \times$ sample size required Drivers $=\frac{{ }^{320}}{440} \times 11=8$, Office $=\frac{80}{440} \times 11=2$, Mech $=\frac{40}{440} \times 11=1$ Label: Drivers 001-320, Office 321-400, Mechanics 401-440 Drivers: Randint $(1,320,8)$ will select 8 drivers Office workers: Randint $(321,400,2)$ will select 2 office workers Mechanics: Randint $(1,320,1)$ will select 1 mechanic
Cluster random selection between strata stratifed vs cluster: Select A few from EVERY category vs all from SOME categories. Randomly select elements within each group versus randomly selecting whole groups	Homogeneous/alike BETWEEN groups. Dissimilar/ heterogeneous/mutually exclusive WITHIN groups i.e. clusters are non-overlapping	Split population into smaller groups called clusters and sample EVERYONE from randomly chosen subgroups. Normally we split up based on area/geographical location. This is similar to stratified sampling, but with stratified sampling the randomness is applied when selecting within each subgroup whereas with cluster sampling the randomness if applied when selecting between each subgroup. When we select the subgroup, we choose EVERY number inside. Therefore not all subgroups will be chosen and therefore won't be represented in the sample unlike with stratified.	An airline that wants to assess customer satisfaction chooses a random sample of 10 of its flights during a single month and asks all of the passengers on those flights to fill out a survey. Why is this a cluster sample and not stratified?
Multistage		This is a complex form of cluster sampling. It utilizes characteristics of stratified and cluster sampling. Step 1: The population is divided into multiple clusters Step 2: These clusters are further divided and grouped into various strata based on similarity. Step 3: A SRS is taken from each strata. Step 4: Divide into multiple clusters again Step 5: Divide and group into various strata again This process continues until the cluster can't be divided anymore (sample size gets reduced at each stage).	Country \Rightarrow States \Rightarrow Counties \Rightarrow Neighbourhoods etc Step 1: Start with a population Step 2: Break down into several clusters (e.g countries) Step 3: Then group/merge the similar clusters into strata (based on similar characteristics of whole clusters) Step 4: Take a SRS of clusters from each strata We will be at the point of having clusters again now but less than originally (e.g states) REPEAT steps 1-4 i.e. group clusters into strata again based on similar characteristics of whole clusters We will have even less clusters now that before (e.g. counties) We use a combination of 2 or more SRS's If these clusters are now small enough we pick individual items/elements from each cluster and are then done

www.mymathscloud.com

Sampling Methods

		When the clusters become small enough we pick elements rather than divide into strata and are done	
Non-Random (no sampling frame) aka non-probability			
Quota	Except samples from each are not random	This is similar to stratified sampling except samples chosen from each strata are not random. We use this when strata are present and stratified sampling is not possible i.e. can't get sampling frame.	
Convenience/ Opportunity	TWSO CIOSE	It involves sampling being drawn from part of the population that is close to hand. In other words, this sampling method involves getting participants wherever you can find them and typically wherever is convenient.	Convenience sampling
Judgemental/ Purposeful		The researcher selects units to be sampled based on their knowledge and professional judgment	
Snowball	MST WLITER SOMEOUSUSEDEE ASASNOWBAL	Existing study subjects recruit future subjects from among their acquaintances. It is used where potential participants are hard to find. Thus, the sample group is said to grow like a rolling snowball.	
Voluntary		A voluntary sample is made up of people who self-select into the survey. Often, these folks have a strong interest in the main topic of the survey	

 Therefore the sample should be highly representative of the target population. Thus stratified sampling provides better coverage of the population. A SRS might over/under represent a subgroup unlike stratified.

- Reasons for using SRS over stratified

When population is homogeneous (too similar to be divided into groups)
Every sample of certain size has the same chance of being selected
Easier and less expensive
Use when no reason to stratify, i.e. no reason to suspect that an outside factor is affecting the response variable. If we suspect that there is an outside factor, we stratify based on that factor

- Reasons for using stratified over SRS
i. When the population is heterogeneous (dissimilar) and certain homogeneous (similar) strata can be isolated i.e. population can easily be divided into strata
ii. Each subgroup within population will receive proper representation so sample will be highly representative of population (this provides better coverage of the population)
iii. If there is large variation in the values of the population (i.e very high values and also very low values in our crop example above), SRS should balance these out. However, this is not always the case since all possible combinations are possible, all the selected values might be low or all selected values might be high. Stratification reduces the variation in the sample values calculated since the values chosen for a particular stratum vary ory little from sass it a
When one suspects that there is some outside factor that can influence or affect the response one must choose the strata correctly though (i.e. homo within and hetero between). One can identify how the outside factor is Whecting what you're testing
v. \quad highly representative of the strata or layers in population. Useful when comparing e.g. age, gender, grade, ethnicity. Sample accurately reflects population structure

When a SRS of an entire population will likely not generate enough analysable cases for a given group of particular interest

 strata.

 much only very satisfied, fairly satisfied and dissatisfied or some scale from 0-10.

are based (water views) thus allowing one to take into the account the opinion based on the type of room if the strata are types of rooms
 general, why might a researcher prefer a stratified random sample over a simple random sample?

www.mymathscloud.com

Sampling Methods

 these categories. A researcher might prefer a stratified sample when the population can easily be divided into strata. Stratified sampling ensures each subgroup receives proper representation within the sample therefore sample will be highly
 very little from sample relative to the variability in the population and thus all categories chosen would be included in the sample. This is very important when there is large variability in the values of the population. So, when one suspects that some outside factor might affect the response, one can identify this by stratifying. However, one must choose the strata correctly!

 expense. So, he decides to pick a sample of 10 to harvest and use the info to estimate the total yield and make
would be the best method of sampling for him to choose? Mean yield per plot are displayed in diagram below:

Hint: We want to stratify based on an outside factor you think might be affecting what you're testing such as distance to river so want the groups to be similar based on this, so stratifty based on similarity, closeness to river
 be different distances from the river i.e. heterogeneous within. We're stratifying based on an outside factor that might affect what we're testing. Sample will be highly representative of the population since we are sure to include high and low yield plots due to having each subgroup based on proximity to river represented

You want to study income differences between black and white in UK. Want sample size of 500 . Should we use SRS or stratified?
 make sure both are well represented
 be chosen for the sample. Is it an SRS? Explain your answer
Ans.No, not every sample of a certain size has the same chance of being selected
 to attend the convention. Is this an SRS?
Ans. No because not every sample/group of 35 people has the same chance of being selected. Every person might have the same chance, but every sample doesn't!

Fill in The Blank Questions

you employ?
You label all the freshmen 001-160, sophomores 161-310, juniors 311-430 and seniors 431-600. Then you use your calculator to randomly select 100 students. Which sampling method did

You label all the freshmen 001-160, sophomores 161-310, juniors 311-430 and seniors 431-600. Then you use your calculator to randomly select 25 students from each grade because you think options may vary based on grade level. Which sampling method did you employ?

You stand in the marble hall one morning before school and randomly pick 25 students to get their opinions about the food in the canteen. Which type of sampling method did you employ?
You wait until lunch, number the tables in the canteen 1 through 40 and then randomly select 5 of them. You then ask everyone at each table about their opinion regarding the canteen's food. Which type of sampling method did you employ?

You want to get a good idea of what students at the high school think of the foo in the canteen. You label the freshmen 001-120, sophomores 121-280, juniors 281-460 and the seniors 461600. The you use your calculator to randomly select 50 students.

We divide a school into four groups based on class (freshmen, sophomore, juniors and seniors). Then we ask random samples of 25 from each class what their opinion regarding whether it's better to have first semester exams in December or January.

To gather information about the validity of a new maths tests for students in the UK, a random sample of 15 state schools was selected. The new test was then administered to every student in the selected schools.

In order to select a sample of undergraduate students in the United Kingdom, I select a simple random sample of ten countries. From each of these countries, I select a simple random
 has 1250 respondents

An ACS board of directors want to get feedback from parents on the quality of teachers at the Cobham campus however they feel opinions may vary based on which school is surveyed. Therefore, they randomly select parents of students from early childhood, the lower school. Middle school and high school separately.

A London bus tour company wants customer feedback, so they randomly select 10 of their buses on a particular Saturday and ask every customer on board to fill out a quick customer satisfaction form before they get off the bus.

A sampling technique which gives every individual the same likelihood of being selected as well as every sample of a certain size the same likelihood of being selected
Answers: SRS, Stratified, Convenience, Cluster, SRS, Stratified, Cluster, Multi-stage, Stratified, Cluster, SRS

Multiple Choice Examples

 the country to ask whether they approve or disapprove of the measure. This is an example of a
a) Systematic Random Sample
b) Stratified Random Sample
c) Multistage Sample
d) Cluster Sample
e) Convenience Sample

A sample of students will be selected from all the students at a high school. Which of the following sampling methods is least likely to produce a representative sample of the students?
a) From a list of all student names, randomly select 50 names from the list for the sample.
b) Randomly choose five classrooms in the school and use all the students in those classrooms for the sample.
c) Divide the students into the four class years (freshman, sophomore, junior, senior) and randomly select students from each year in proportion to the number of students in each year.
d) From a numbered list of all student names, randomly choose a starting point and then choose every tenth student on the list
e) From a randomly chosen home basketball game, choose every tenth student who enters the gymnasium

A certain store has 3,000 employees working at its main location in a city and 100 employees working at a smaller location outside the city. The store manager will select a sample of 50 employees from all the employees to ask their opinions about extending store hours during the holidays. What is the advantage of selecting a stratified random sample, with location as strata, instead of a simple random sample?
a) Divide the town into nonoverlapping regions. Randomly select from the nonoverlapping regions, and select all housing units in those regions.
b) The stratified sample assures the most random selection from among all selection methods.
c) The stratified sample will be less expensive to implement than a simple random sample and will save money over time.
d) The stratified sample assures employees that store hours will not be extended until their opinions are recorded.

www.mymathscloud.com

Sampling Methods

e) There is no real advantage to stratifying because a simple random sample is always the best
 following descriptions of sampling procedures, which is most likely to introduce a potential source of bias?
a) Randomly select 10 employees from department c
b) Randomly select 10 employees from all 100 employees
c) Randomly select 2 employees from each of the five departments
d) Randomly select 1 employee from each of A and $B, 2$ employees from C, and 3 employees from each of D and E
e) Randomly select every tenth employee from a randomized list of names of all employees

 this procedure give a simple random sample of 30 children from the elementary school?
a) No, because the teachers were not selected randomly
b) No, because not all possible groups of 30 children had the same chance of being chosen
c) No, because not all children had the same chance of being chosen
d) Yes, because each child had the same chance of being chosen
e) Yes, because the numbers were assigned randomly to the children

Answers: b, e since don't have a random starting point, b, a, b

Longer Examples

 randomly select 12 of the 120 freshmen, 16 of the 160 sophomores, 18 of the 180 juniors and 14 of the 140 seniors.
a) Is this a simple random sample (SRS), explain why or why not as if it is not, what type of sample is it?
b) Use the line of random digits below to select to select the first three juniors who will be sent to the conference. $71487099842907714863 \quad 61683470526222451025$
c) Choose the subjects using a random number generator instead to select a (total) sample of size 30 this time

Ans.
a) no, not every sample of a certain size has the same chance of being selected. This is stratified sampling. b) 2 Ways to Label:

Non-Continuous:001-120 freshman, 001-160 sophomore, 001-180 juniors, 001-140 seniors
OR
Continuous: 001-120 freshman, 121-280 sophomore, 281-460 juniors, 461-600 seniors
Hint: Use the one which will give you a sample size of 3 from the given table which is the latter
We select students with numbers:077,148, 168
 sizes for each strata
freshman: $\frac{120}{600} \times 30=6$
sophomores: $\frac{160}{600} \times 30=8$
juniors: $\frac{180}{600} \times 30=9$
seniors: $\frac{140}{600} \times 30=7$
Label 001-120 freshman, 121-280 sophomore, 281-460 juniors, 461-600 seniors. Ignore repetitions
Pick 6 freshman Randint $(001,120,6)$
8 sophomores Randint $(121,280,8)$
9 juniors Randint $(281,460,6)$
7 seniors Randint $(461,600,6)$
 random digits and roster given below to select the five students. Make sure to show how you label the students!

Andrew Alex Sophia Garrett Jude Esther Kyle Abdulla Bailey AJ Tyler Matvey Williams Mackenzie Guy Brandi Tarek Madelief Julian Ben Tori Shuming
Random Digits: $69051 \quad 64817$

Ans.
Label students 00-22 going horizontally
We select 05, 16, 17, 20, 19
Jude, Brandi, Tarek, Ben, Julian

i. For convenience, the apartment building owner wants to use a cluster sampling method, in which the floors are clusters, to select the eight apartments. Describe a process for randomly selecting eight different apartments using this method.
ii. An alternative sampling method would be to select a stratified random sample of eight apartments, where the strata are apartments with children and apartments with no children. A stratified random sample of size eight might include two randomly selected apartments with children and six randomly selected apartments with no children. In the context of this situation, give one statistical advantage of selecting such a stratified sample as opposed to a cluster sample of eight apartments using the floors as clusters.

Ans.
Step 1: Assign unique random numbers to each of the 9 floors by labelling them 01-09
Step 2: use random number generator to select 2 floors
Step 2: Replace the carpet of the 4 apartments on the 2 floors
Since wear and tear on the carpet may be different in apartments with and without children, you would be guaranteed to have both represented using a stratified sample. In a cluster sample, it is possible to get 8 apartments where no children live.

